Ensemble Learning: Better Predictions Through Diversity

Todd Holloway (Trulia)
General
Location: Mission Hills

In the ongoing Netflix Prize competition (netflixprize.com), participants are asked to write a program that can predict how a user will rate any movie. Many of the frontrunners’ programs are, in fact, collections of programs. Each program in a collection takes a different approach to this prediction problem. For a particular user and movie, the predictions of the individual programs are combined to make the final prediction. By using such ensembles, these participants have seen the accuracy of their programs increase.

This talk will provide an introduction to how recommendation systems have been built, and consider the ensemble approaches used in the Netflix Prize as evidence of the value of combining approaches.

Todd Holloway

Trulia

Todd Holloway is a PhD Candidate in computer science at Indiana University. He is currently on leave, and working as an engineer at Ingenuity Systems (Ingenuity.com). His research interests are visualization, machine learning, and artificial intelligence. Examples of his work may be found on his blog (abeautifulwww.com).

Sponsors

Diamond Sponsor

  • Sun Microsystems

Gold Sponsors

  • Adobe Systems, Inc.
  • Amazon Web Services
  • Disney
  • Google
  • Make magazine
  • Yahoo! Inc.

Silver Sponsors

  • AdaptiveBlue
  • Jaduka

Premier Media Partner

  • ZDNet